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Lifetimes of agents under external stress

Claus O. Wilke and Thomas Martinetz
Institut für Neuroinformatik, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

~Received 8 December 1998!

An exact formula for the distribution of lifetimes in coherent-noise models and related models is derived.
For certain stress distributions, this formula can be analytically evaluated and yields simple closed expressions.
For those types of stress for which a closed expression is not available, a numerical evaluation can be done in
a straightforward way. All results obtained are in perfect agreement with numerical experiments. The impli-
cations for the coherent-noise models’ application to macroevolution are discussed.@S1063-651X~99!51803-5#

PACS number~s!: 05.40.2a, 87.23.Kg
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Agents under externally imposed stress have been
cently studied in coherent-noise and related models@1–7#.
These models display scale free distributions in a numbe
quantities, such as event sizes and lifetimes, or in the de
pattern of aftershocks. Coherent-noise models are very
ferent from other models displaying scale free behavior, s
as sand pile models@8#, as they do not rely on local interac
tions or feedback. Hence, they are not self-organized criti
Considered the abundance of power-law distributed qua
ties in nature@9#, models such as the ones of the cohere
noise type can help understanding to what extent s
organized criticality is the right paradigm for describin
driven systems, and to what extent other mechanisms
provoke similar power-law distributions.

Despite the simplicity of the original coherent-noi
model ~agents have thresholdsxi ; if global stress exceeds
thresholdxi , agent i gets replaced; with probabilityf , an
agent gets a new threshold!, no exact analytical results hav
been obtained so far. The distributions of event sizes
aftershocks have been studied in detail in@3# ~event sizes!
and in@10# ~aftershocks!. Both distributions can be regarde
as being well understood. Nevertheless, the theoretica
sults are only of approximative character in both cases.

In the case of the distribution of lifetimes, there are ev
fewer theoretical results. Sneppen and Newman@3# have
given an expression based on their time-averaged app
mation. This expression is right for certain stress distrib
tions, as we will show below. However, it breaks down f
slowly decaying distributions such as the Lorentzian dis
bution. Moreover, it is not clear when exactly it can be a
plied.

In a recent paper@7#, a different approach of calculatin
the distribution of lifetimes has been taken, and the aut
claimed that the lifetimes obey multiscaling, with aL22 de-
crease for small lifetimes, and aL21 decrease for large life
times. Here, we will demonstrate that this statement
wrong. We will calculate the distribution of lifetimes ex
actly, without any approximations, and we will show that o
results are in perfect agreement with numerical simulatio

Our calculations are based on the observation that it is
necessary to know the distribution of thresholdsr(x) for
calculating the distribution of lifetimes. All we have to kno
is the distribution according to which agents enter the s
tem, which is calledpthresh(x) in the notation of@1#, and the
stress distributionpstress(x). Once an agent has entered t
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system, it has a well defined life expectancy, which is clos
related to the probability that the agent will be hit by stre
or mutation. Note that in this picture, we are consideri
only a single agent. Therefore, if we talk about lifetimes,
does not matter whether the stress acts coherently on a
number of agents, or whether it is drawn for all agents in
pendently. In this respect, the results we obtain in this w
are of a much more general nature than the results fo
previously for event sizes or aftershocks.

An agent with thresholdx will survive stress and mutation
in one time step with a probabilityp(x) equal to@5#

p~x!5~12 f !@12pmove~x!#5~12 f !E
0

x

pstress~x8! dx8.

~1!

What is the distribution of the survival probabilitiesp? We
denote the corresponding density function byu(p). Clearly,
we have

u~p! dp5pthresh~x! dx5dx for 0<x,1. ~2!

In the second step, we have assumed that the threshold
tribution is uniform. This can always be achieved after
suitable transformation of variables@3#. Hence, we find

u~p!5
dx

dp
. ~3!

The derivativedx/dp can be calculated from Eq.~1!,

dx

dp
5

1

~12 f !pstress@x~p!#
, ~4!

and x(p) can be obtained from Eq.~1! by inversion. The
density function is thus defined forp,pmax, where

pmax5p~1!5~12 f !E
0

1

pstress~x! dx ~5!

stems from the condition that the thresholds are distribu
uniformly between 0 and 1. Abovepmax, the density function
u(p) is equal to zero.

All agents with the same survival probabilityp generate a
distribution of lifetimes which reads
R2512 ©1999 The American Physical Society
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g~L !5pL21~12p!. ~6!

Here, g(L) is the probability density function for the life
times L. Note that the model works in discrete time ste
therefore the lifetimesL are integers, andg(L) is only de-
fined for integral arguments. We can calculate the distri
tion of lifetimes h(L) by averaging over the distribution
generated by different survival probabilitiesp, weighted with
their density functionu(p):

h~L !5E
0

pmax
u~p!pL21~12p! dp. ~7!

Equation~7! can be explicitly evaluated for exponential
distributed stress,pstress5exp(2x/s)/s. We find

u~p!5
s

12 f 2p
for 0<p,pmax, ~8!

with

pmax5~12 f !@12exp~21/s!#. ~9!

After inserting this into Eq.~7! and doing some basic calcu
lations, we obtain

h~L !5
spmax

L

L
1 f sE

0

pmax pL21

12 f 2p
dp. ~10!

It is possible to calculate the remaining integral with the
of the identity~see@11#, 15.3.1!

E
0

1

tb21~12t !c2b21~12tz!2a dt

5
G~b!G~c2b!

G~c!
F~a,b;c;z!, ~11!

whereF(a,b;c;z) is the hypergeometric function. We find

h~L !5s
pmax

L

L F11
f

12 f
FS L,1;L11;

pmax

12 f D G . ~12!

The leading termspmax
L /L is responsible for aL21 decay

with cut off at L'1/f . This behavior has been reported pr
viously, and it corresponds to the approximation derived
@3#. The correcting term vanishes withf . It is of importance
only for extremely long lifetimes of the order 1/f , for which
it modifies the detailed cut-off behavior.

In Fig. 1 we display Eq.~12! together with results from
direct numerical simulations, for different values off . The
theoretical result is in perfect agreement with the measu
distributions. The dependency of the cutoff onf is clearly
visible in Fig. 1.

Another stress distribution for which we can derive
closed analytic form forh(L) is the uniform distribution,
pstress(x)51 for 0<x,1. We find

u~p!5
1

12 f
for 0<p,12 f ~13!

and
,

-

-
n

d

h~L !5
~12 f !L21

L~L11!
~11 f L !. ~14!

As in the case of Eq.~10!, we get a leading and a correctin
term. The leading term decays asL22 with the cutoff atL
'1/f , and the second term modifies the cut-off behavi
Interestingly, the distribution of lifetimes is scale-free, a
though the distribution of event sizes in a coherent-no
model with uniform stresses is not a power law@3#. A plot of
Eq. ~14! is given in Fig. 2, together with the correspondin
measured distribution.

For the most other stress distributions, the integral in
~7! can only be done numerically. This is the case, for e
ample, for the Gaussian distribution, p stress(x)
5A2/(ps2)exp@2x2/(2s2)#. Under Gaussian stress, an age
with thresholdx will survive a single time step with prob
ability

p~x!5~12 f ! erfS x

A2s
D , ~15!

where erf(x) is the error function

FIG. 1. Distribution of lifetimes of agents subjected to expone
tially distributed stress, withs50.08. The gray lines represent th
results obtained from computer experiments, the black lines re
sent the theoretical prediction Eq.~10!. Theory and computer ex
periment are in perfect agreement.

FIG. 2. Comparison of theory and computer experiment for
uniform and for the Gaussian stress distribution. As in the cas
Fig. 1, we observe perfect agreement.
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erf~x!5
2

Ap
E

0

x

exp~2t2! dt. ~16!

Inversion of Eq.~15! yields

x~p!5A2s erf21S p

12 f D . ~17!

Here, by erf21(z) we denote the inverse error function, o
tained by solving the equationz5erf(x) for x. We can cal-
culate the density function of the survival probabilities w
the aid of Eqs.~4! and ~17!. The resulting expression read

u~p!5Ap

2

s

12 f
expH Ferf21S p

12 f D G
2J . ~18!

The numerical integration ofu(p)pL21(12p) is somewhat
tricky for choices ofs such, thatpmax/(12f) is very close to
1, since the inverse error function has a singularity at
However, for moderately smalls, the integration can be car
ried out without too much trouble. The resulting dens
function h(L) is shown in Fig. 2 fors50.15 andf 51024.
We find that, forL!1/f , the functionh(L) is almost linear
in the log-log plot. A fit to the linear region ofh(L) gives an
exponentt51.17760.01, which meansh(L) decays slightly
steeper than theL21 decay predicted by the approximatio
of Sneppen and Newman. However, if we evaluateh(L) for
much largerL and much smallerf , we find that the exponen
t decreases slowly towards the value 1~Fig. 3!.

Let us now turn to the Lorentzian distributionpstress(x)
5(2a/p)/(x21a2). In this case, a calculation along th
lines of Eqs.~1!–~5! yields the following distribution of sur-
vival probabilities:

u~p!5
p

2

a

12 f S cos2Fp2 p

12 f G D
21

. ~19!

Here, pmax5(2/p)(12 f )arctan(1/a). The result of the nu-
merical integration is shown in Fig. 4. As in the previo
cases, we observe a perfect agreement between the an
expression forh(L) and the distribution measured in com

FIG. 3. Distribution of lifetimes of agents under Gaussian stre
with s50.15 and different values off . For very small mutation
ratesf , the distribution of lifetimes becomes 1/L for L larger than
about 105 time steps.
.

ytic

puter experiments. In the case of Lorentzian stresses,
distribution of lifetimes is clearly not scale invariant.

In @7# it has been claimed that the distribution of th
agents’ lifetimes under external stress decays asL22 for
small L. Among the four stress distributions considered
this work, we found aL22 decay only for the uniform stres
distribution. Hence the statement made in@7# is wrong in
general. We could verify theL21 decay reported in@3# for
exponential or Gaussian stresses. As it was also stated t
the Lorentzian stress distribution does not produce a s
free distribution of lifetimes.

A surprising result of this work is the observation that t
properties of the distribution of lifetimes and of the distrib
tion of event sizes in a coherent-noise model are largely
dependent from each other. We do find power-law distr
uted lifetimes under uniform stress, under which t
distribution of event sizes is not scale free, and we do
find power-law distributed lifetimes under Lorentzian stre
which generates a scale free distribution of event sizes. C
sequently, we cannot infer from a power-law distribution
event sizes to one of lifetimes, and vice versa. Both distri
tions have to be investigated independently for every type
stress.

Let us conclude with some remarks on the implications
our results for the application of coherent-noise or rela
models to large scale evolution. In the context of macroe
lution, the agents are regarded as species, or higher t
nomical units, such as genera or families@12#. The distribu-
tion of genus lifetimes in the fossil record follows either
power-law decrease with exponent near 2, or an expone
decrease@13,14#. A L22 decay can be observed in coheren
noise models with uniform stress. However, in this case
distribution of extinction events does not follow thes22 de-
cay ~with s denoting the number of families gone extinct
one time step! found in the fossil record@2#. The distribution
of lifetimes closest to an exponential decay is, among
stress distributions we studied here, generated by Lorent
stresses. But also in this case, the distribution of extinct
events is significantly different from the neededs22 decay of
extinction events. On the other hand, it seems to be typ
for distributions generating as22 decay, such as exponentia
Gaussian, or Poissonian, that the distribution of lifetimes
cays asL21. It is arguable whether any type of stress c
actually generate the right type of distribution for lifetime
and extinction events simultaneously. Hence, the coher

s,
FIG. 4. With Lorentzian stresses, the distribution of lifetimes

no longer scale invariant.
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noise models in their current formulation probably m
some important ingredient as a model of macroevolution.
effect which is not covered, and which has been shown
cently to be of importance for the statistical patterns in
n
e-
e

fossil record, is a decline in the extinction rate@14–17#. For
example, Sibaniet al. @16,18# have demonstrated that th
L22 decay in lifetimes might be closely related to the decli
in the extinction rate.
,
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