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Lifetimes of agents under external stress
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An exact formula for the distribution of lifetimes in coherent-noise models and related models is derived.
For certain stress distributions, this formula can be analytically evaluated and yields simple closed expressions.
For those types of stress for which a closed expression is not available, a numerical evaluation can be done in
a straightforward way. All results obtained are in perfect agreement with numerical experiments. The impli-
cations for the coherent-noise models’ application to macroevolution are disc[84663-651X99)51803-5
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Agents under externally imposed stress have been resystem, it has a well defined life expectancy, which is closely
cently studied in coherent-noise and related mod#&ls7]. related to the probability that the agent will be hit by stress
These models display scale free distributions in a number ofr mutation. Note that in this picture, we are considering
quantities, such as event sizes and lifetimes, or in the decagnly a single agent. Therefore, if we talk about lifetimes, it
pattern of aftershocks. Coherent-noise models are very diidoes not matter whether the stress acts coherently on a large
ferent from other models displaying scale free behavior, suchumber of agents, or whether it is drawn for all agents inde-
as sand pile model[$], as they do not rely on local interac- pendently. In this respect, the results we obtain in this work
tions or feedback. Hence, they are not self-organized criticalre of a much more general nature than the results found
Considered the abundance of power-law distributed quantipreviously for event sizes or aftershocks.
ties in naturg9], models such as the ones of the coherent- An agent with threshola will survive stress and mutation
noise type can help understanding to what extent selfin one time step with a probability(x) equal to[5]
organized criticality is the right paradigm for describing
driven systems, and to what extent other mechanisms can _ _ x , ,
provoke similar power-law distributions. PO =(1=D[1- pmo\,e(x)]—(l—f)fo PstresX") dX'.

Despite the simplicity of the original coherent-noise )
model (agents have thresholds; if global stress exceeds a
thresholdx;, agenti gets replaced; with probabilitf, an  What is the distribution of the survival probabilitig® We
agent gets a new threshplecho exact analytical results have denote the corresponding density functionufyp). Clearly,
been obtained so far. The distributions of event sizes andie have
aftershocks have been studied in detai[ 3} (event sizes
and in[10] (aftershocks Both distributions can be regarded u(p) dp=Pinres X) dx=dx  for O=x<1. (2

as being well understood. Nevertheless, the theoretical re- )

In the case of the distribution of lifetimes, there are everfribution is uniform. This can always be achieved after a
fewer theoretical results. Sneppen and Newriah have suitable transformation of variabl¢3]. Hence, we find
given an expression based on their time-averaged approxi-
mation. This expression is right for certain stress distribu- u(p)= % 3)
tions, as we will show below. However, it breaks down for dp
slowly decaying distributions such as the Lorentzian distri-
bution. Moreover, it is not clear when exactly it can be ap-The derivativedx/dp can be calculated from Eql),

plied.
In a recent papel7], a different approach of calculating %: 1 @)
the distribution of lifetimes has been taken, and the author dp  (1—1f)psyeskX(p)]’

claimed that the lifetimes obey multiscaling, with.a? de-

crease for small lifetimes, andla * decrease for large life- andx(p) can be obtained from Ed1) by inversion. The

times. Here, we will demonstrate that this statement iglensity function is thus defined f@r<p.,, where

wrong. We will calculate the distribution of lifetimes ex- )

actly, without any approximations, and we will show that our _ —(1_

results are in perfect agreement with numerical simulations. Pmax=P(1)=(1 f)fo PstrestX) dX ©
Our calculations are based on the observation that it is not

necessary to know the distribution of threshojsls) for  stems from the condition that the thresholds are distributed

calculating the distribution of lifetimes. All we have to know uniformly between 0 and 1. Abovg,,., the density function

is the distribution according to which agents enter the sysu(p) is equal to zero.

tem, which is calledby,es{X) in the notation of 1], and the All agents with the same survival probabilipygenerate a

stress distributiomgyes£X). Once an agent has entered thedistribution of lifetimes which reads
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g(L)=p-"*(1-p). (6) W07

Here, g(L) is the probability density function for the life- 3 1072

timesL. Note that the model works in discrete time steps, =

therefore the lifetimed are integers, and(L) is only de- *E’ 1073t

fined for integral arguments. We can calculate the distribu- é

tion of lifetimes h(L) by averaging over the distributions 5 1074t

generated by different survival probabilitipsweighted with e

their density functioru(p): = 105t

Pmax L-1 1076 - - L .
h(L)= u(p)p-~(1—p)dp. (7) 10° 101 102 10° 10° 10°
0 time ¢ (time steps)

Equation(7) can be explicitly evaluated for exponentially

distributed stresSqyec= eXp—x/a)/e. We find FIG. 1. Distribution of lifetimes of agents subjected to exponen-

tially distributed stress, witlr=0.08. The gray lines represent the
o results obtained from computer experiments, the black lines repre-
u(p)=——>— for 0<p<pmax (8) sent the theoretical prediction E@LO). Theory and computer ex-
1-f- periment are in perfect agreement.
with
nw=0 14
Prma= (1= D[ 1~ ex — Lo)]. ) L= T AL (149

After inserting this into Eq(7) and doing some basic calcu-
lations, we obtain As in the case of Eq.10), we get a leading and a correcting

term. The leading term decays BS? with the cutoff atL
OPhax Pmax P ~1/f, and the second term modifies the cut-off behavior.
h(L):—L +f"f0 1_f_pdp. (10 Interestingly, the distribution of lifetimes is scale-free, al-
though the distribution of event sizes in a coherent-noise
It is possible to calculate the remaining integral with the aidmode! with uniform stresses is not a power Ig8}. A plot of

of the identity(see[11], 15.3.1 Eq. (14) is given in Fig. 2, together with the corresponding
measured distribution.

L-1

L b1 Ca For the most other stress distributions, the integral in Eq.
fot (1-1) (1-tz)""dt (7) can only be done numerically. This is the case, for ex-
ample, for the Gaussian distribution, p gyes{X)
I'(b)I'(c—b) N =\2/(wa?)exd —x%(20%)]. Under Gaussian stress, an agent
G F(a,b;c;2), (1D with thresholdx will survive a single time step with prob-
ability
whereF(a,b;c;z) is the hypergeometric function. We find
Praf T P (x)=(1-1) f( - ) 15
= g _ . . Fmax p(x)=(1—-f)erfl —|,
h(L)=0c 3 {1+ l_fF<L'1’L+1’1_f) . (12 2o

The leading termapana)jL is responsible for & ! decay
with cut off atL~1/f. This behavior has been reported pre-
viously, and it corresponds to the approximation derived in

where erfk) is the error function

107°

[3]. The correcting term vanishes with It is of importance uniform stress, f = 10~
only for extremely long lifetimes of the orderfl/for which 10 Gaussian stress, f =107, 0 =0.15 -----
it modifies the detailed cut-off behavior. = )

In Fig. 1 we display Eq(12) together with results from S 1072}
direct numerical simulations, for different values fof The é L
theoretical result is in perfect agreement with the measured & 1075
distributions. The dependency of the cutoff biis clearly S 1071}
visible in Fig. 1. g

Another stress distribution for which we can derive a 1075¢
closed analytic form foth(L) is the uniform distribution, Y 3
PstreséX) =1 for O=x<1. We find 10 10° lbl 1‘02 103 1IO4 10°

1 time ¢ (time steps)
u(p)= 1—f for O<p<1-f (13 FIG. 2. Comparison of theory and computer experiment for the

uniform and for the Gaussian stress distribution. As in the case of
and Fig. 1, we observe perfect agreement.
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FIG. 4. With Lorentzian stresses, the distribution of lifetimes is

FIG. 3. Distribution of lifetimes of agents under Gaussian stress,, longer scale invariant.

with 0=0.15 and different values df. For very small mutation
ratesf, the distribution of lifetimes becomesLLfor L larger than

g puter experiments. In the case of Lorentzian stresses, the
about 16 time steps.

distribution of lifetimes is clearly not scale invariant.
In [7] it has been claimed that the distribution of the

2 (x 5 agents’ lifetimes under external stress decayd a$ for
erf(x)=—| exp(—t%) dt. (16 small L. Among the four stress distributions considered in
NEL _ o .
this work, we found & ~“ decay only for the uniform stress
Inversion of Eq.(15) yields distribution. Hence the statement made[# is wrong in

general. We could verify the " decay reported if3] for
p exponential or Gaussian stresses. As it was also stated there,
X(p)= \/Ecr erf‘l(ﬁ). a7 the Lorentzian stress distribution does not produce a scale
free distribution of lifetimes.

A surprising result of this work is the observation that the
properties of the distribution of lifetimes and of the distribu-
tion of event sizes in a coherent-noise model are largely in-
dependent from each other. We do find power-law distrib-
uted lifetimes under uniform stress, under which the
distribution of event sizes is not scale free, and we do not

the aid of Eqs(4) and(17). The resulting expression reads
2
]. (18)  find power-law distributed lifetimes under Lorentzian stress,
which generates a scale free distribution of event sizes. Con-

N -1 _P
u(p)_\/;l_fexp: erf (
sequently, we cannot infer from a power-law distribution of

1—f
- - - Lil -
The numerical integration ai(p)p~~*(1—p) is somewhat gyent sizes to one of lifetimes, and vice versa. Both distribu-

tricky for choices ofo- such, thaip,,/(1-f) is very close to  ions have to be investigated independently for every type of
1, since the inverse error function has a singularity at lgtress.

However, for moderately smadt, the integration can be car- | gt ys conclude with some remarks on the implications of
ried out without too much trouble. The resulting density oy results for the application of coherent-noise or related
functionh(L) is shown in Fig. 2 forr=0.15 andf=10"" models to large scale evolution. In the context of macroevo-
We find that, forL<1/f, the functionh(L) is almost linear |ytion, the agents are regarded as species, or higher taxo-
in the log-log plot. A fit to the linear region ¢f(L) gives an  nomical units, such as genera or famil[d€]. The distribu-
exponentr=1.177+ 0.01, which meanb(L) decays slightly  tijon of genus lifetimes in the fossil record follows either a
steeper than the ~* decay predicted by the approximation power-law decrease with exponent near 2, or an exponential
of Sneppen and Newman. However, if we evallate) for  decreas¢13,14. A L2 decay can be observed in coherent-
much largei. and much smallef, we find that the exponent npjse models with uniform stress. However, in this case the
7 decreases slowly towards the valu¢Flg. 3). distribution of extinction events does not follow tee? de-

Let us now turn to the Lorentzian distributignyes{X)  cay (with s denoting the number of families gone extinct in
=(2a/m)/(x*+a?%). In this case, a calculation along the one time stepfound in the fossil recor@2]. The distribution
lines of Egs.(1)—(5) yields the following distribution of sur-  of Jifetimes closest to an exponential decay is, among the

Here, by erf 1(z) we denote the inverse error function, ob-
tained by solving the equatiar= erf(x) for x. We can cal-
culate the density function of the survival probabilities with

vival probabilities: stress distributions we studied here, generated by Lorentzian
. stresses. But also in this case, the distribution of extinction

u(p)= T a o2 T b ) (19 events is significantly different from the needed® decay of
21—f 21—f extinction events. On the other hand, it seems to be typical

for distributions generating s 2 decay, such as exponential,
Here, pma= (2/7) (1—f)arctan(14). The result of the nu- Gaussian, or Poissonian, that the distribution of lifetimes de-
merical integration is shown in Fig. 4. As in the previous cays asL 2. It is arguable whether any type of stress can
cases, we observe a perfect agreement between the analygictually generate the right type of distribution for lifetimes
expression foh(L) and the distribution measured in com- and extinction events simultaneously. Hence, the coherent-
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noise models in their current formulation probably missfossil record, is a decline in the extinction rafiet—17. For
some important ingredient as a model of macroevolution. Arexample, Sibaniet al. [16,18 have demonstrated that the
effect which is not covered, and which has been shown rek ~? decay in lifetimes might be closely related to the decline
cently to be of importance for the statistical patterns in thein the extinction rate.
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